cellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of pyrimido and pyrazolo[4,5-b]quinolines under solvent-free conditions
Authors
abstract
cellulose sulfuric acid was used as an efficient biopolymer-based catalyst for the synthesis of tetrahydropyrimido[4,5-b]quinoline-2,4,6-triones and hexahydro-2h-pyrazolo[5,4-b]quinoline-6-ones via three component reaction of aldehyde, 5,5-dimethyl-1,3-cyclohexadione and 6-amino-1,3-dimethyluracil or 5-amino-3-methyl-1-phenypyrazole under solvent-free conditions at 90 oc. the major advantages of the present method are simple experimentation, use of inexpensive and eco-friendly reusable catalyst with good yields and short reaction times.
similar resources
Cellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of pyrimido and pyrazolo[4,5-b]quinolines under solvent-free conditions
Cellulose sulfuric acid was used as an efficient biopolymer-based catalyst for the synthesis of tetrahydropyrimido[4,5-b]quinoline-2,4,6-triones and hexahydro-2H-pyrazolo[5,4-b]quinoline-6-ones via three component reaction of aldehyde, 5,5-dimethyl-1,3-cyclohexadione and 6-amino-1,3-dimethyluracil or 5-amino-3-methyl-1-phenypyrazole under solvent-free conditions at 90 oC. The major advantages o...
full textCellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of pyrimido and pyrazolo[4,5-b]quinolines under solvent-free conditions
Cellulose sulfuric acid was used as an efficient biopolymer-based catalyst for the synthesis of tetrahydropyrimido[4,5-b]quinoline-2,4,6-triones and hexahydro-2H-pyrazolo[5,4-b]quinoline-6-ones via three component reaction of aldehyde, 5,5-dimethyl-1,3-cyclohexadione and 6-amino-1,3-dimethyluracil or 5-amino-3-methyl-1-phenypyrazole under solvent-free conditions at 90 oC. The major advantages o...
full textA green and eco-friendly method for the synthesis of xanthene derivatives using cellulose sulfuric acid under solvent-free conditions
A green and convenient method for the synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-8,13-diones and spiro[dibenzo[a,i]-xanthene-14,3'-indoline]-2',8,13-triones in the presence of a catalytic amount of cellulose sulfuric acid (CSA) as an efficient biopolymer-based catalyst under solvent-free conditions at 100 °C is described. The condensation reactions of β-naphtol, 2-hydroxynaphthalene-1,4-dion...
full textHighly efficient multicomponent Biginelli’s synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by Al-MCM-41 under solvent-free conditions
In this study, an efficient and green process for the synthesis of dihydropyrimidin-2(1H)-ones from aromatic benzaldehydes, ethyl acetoacetate and urea using Al-MCM-41 as heterogeneous catalyst and microreactor under solvent-free conditions has been developed. The advantages of this method are easy work-up procedure, regeneration of the catalyst, clean and neutral reaction conditions.
full textHighly efficient multicomponent Biginelli’s synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by Al-MCM-41 under solvent-free conditions
In this study, an efficient and green process for the synthesis of dihydropyrimidin-2(1H)-ones from aromatic benzaldehydes, ethyl acetoacetate and urea using Al-MCM-41 as heterogeneous catalyst and microreactor under solvent-free conditions has been developed. The advantages of this method are easy work-up procedure, regeneration of the catalyst, clean and neutral reaction conditions.
full textEfficient Synthesis and Deprotection of Semicarbazones under Solvent-Free Conditions
Effective methodologies for efficient preparation of semicarbazones from aldehydes or ketones via milling and the subsequent regeneration of the parent carbonyls by gaseous nitrogen dioxide are described under solid-solid and gas-solid reaction conditions, respectively. These methods are fast, simple and environmentally benign which do not require the use of any auxiliaries such as catalyst...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of catalysisPublisher: islamic azad university, shahreza branch
ISSN 2252-0236
volume 4
issue 2 2014
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023